解题思路:矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形,据此判断.
A、对角线相等,四边形不一定是矩形,例如等腰梯形;
B、两组对边相等,四边形也不一定是矩形,例如平行四边形;
C、两组对角都为直角,四边形不一定是矩形,因为另两个角度数不确定;
D、根据矩形的判定,三个角都为直角,四边形就是矩形.
故选D.
点评:
本题考点: 矩形的判定.
考点点评: 本题主要考查了矩形的定义和判定.
解题思路:矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形,据此判断.
A、对角线相等,四边形不一定是矩形,例如等腰梯形;
B、两组对边相等,四边形也不一定是矩形,例如平行四边形;
C、两组对角都为直角,四边形不一定是矩形,因为另两个角度数不确定;
D、根据矩形的判定,三个角都为直角,四边形就是矩形.
故选D.
点评:
本题考点: 矩形的判定.
考点点评: 本题主要考查了矩形的定义和判定.