若x≤0,则y=f[f(x)]-1=2^(2^x)-1
令2^(2^x)-1=0
即2^(2^x)=2^0
即2^x=0,显然无解
表明此时y=f[f(x)]-1无零点
若x>0,则y=f[f(x)]-1=log2[log2(x)]-1
令log2[log2(x)]-1=0
即log2[log2(x)]=log2(2)
即log2(x)=2
解得x=4
所以y=f[f(x)]-1的零点个数为1
若x≤0,则y=f[f(x)]-1=2^(2^x)-1
令2^(2^x)-1=0
即2^(2^x)=2^0
即2^x=0,显然无解
表明此时y=f[f(x)]-1无零点
若x>0,则y=f[f(x)]-1=log2[log2(x)]-1
令log2[log2(x)]-1=0
即log2[log2(x)]=log2(2)
即log2(x)=2
解得x=4
所以y=f[f(x)]-1的零点个数为1