1)将根x=-1代入方程得:a-b+1=0,得:a=b-1
f(x)的值域为[0,+∞),表明f(x)为完全平方式,delta=0,即b^2-4a=0
代入a,得:b^2-4b+4=0,解得:b=2
因此a=1
故f(x)=x^2+2x+1=(x+1)^2
2)g(x)=x^2+(2-k)x+1在[-2,2]是单调函数,即对称轴不在此区间
而对称轴为k/2-1
所以有:k/2-1>=2或k/2-1=6或k
1)将根x=-1代入方程得:a-b+1=0,得:a=b-1
f(x)的值域为[0,+∞),表明f(x)为完全平方式,delta=0,即b^2-4a=0
代入a,得:b^2-4b+4=0,解得:b=2
因此a=1
故f(x)=x^2+2x+1=(x+1)^2
2)g(x)=x^2+(2-k)x+1在[-2,2]是单调函数,即对称轴不在此区间
而对称轴为k/2-1
所以有:k/2-1>=2或k/2-1=6或k