解题思路:根据角平分线上的点到两边的距离相等可知点E在∠CAB的角平分线上,再根据角平分线的性质可知∠CEF=∠CFE,即可得出CF=CE,即三角形为等腰三角形.
△CEF是等腰三角形,理由如下:
证明:∵点E到AC、AB的距离相等,
∴点E在∠CAB的平分线上,
∴AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠CEA=180°-∠CAE-∠ACB,∠DFA=180°-∠DAE-∠ADC.
∵∠ACB=∠CDA,
∴∠CEA=∠DFA,
∵∠DFA=∠CFE,
∴∠CEF=∠CFE,
∴CF=CE.
∴△CEF是等腰三角形.
点评:
本题考点: 等腰三角形的判定;角平分线的性质.
考点点评: 本题主要考查了等腰三角形的判定以及角平分线的性质,难度适中.