设非空集合M、N满足:M={x|f(x)=0},N={x|g(x)=0},P={x|f(x)g(x)=0},则集合P恒满

1个回答

  • 解题思路:根据集合的定义和集合间的并集定义,推出P集合的情况,求出M∪N,然后判断选项.

    ∵P={x|f(x)g(x)=0},

    ∴P有三种可能即:P={x|f(x)=0},或P={x|g(x)=0}或P={x|f(x)=0或g(x)=0},

    ∵M={x|f(x)=0},N={x|g(x)=0},

    ∵M∪N={x|f(x)=0或g(x)=0},

    ∴P⊆(M∪N),

    故选B.

    点评:

    本题考点: 集合的包含关系判断及应用.

    考点点评: 此题考查子集的性质及交集的运算,此题的集合是抽象的,不是具体的,但比较简单,写出p的三种情况就可以了.