令y'=p
则y"=p'
方程化为:xp'=p(lnp-lnx)
再令p=xu,则p'=u+xu' ,代入上式:
x(u+xu')=xu(lnxu-lnx)
u+xu'=ulnu
xdu/dx=u(lnu-1)
du/[u(lnu-1)]=dx/x
d(lnu)/(lnu-1)=dx/x
积分:ln|lnu-1|=ln|x|+C1
得lnu-1=Cx
即u=e^(1+cx)
y'=xe^(1+cx)
积分得:
y=xe^(1+cx)*1/c-1/c∫e^(1+cx)dx
=1/c*xe^(1+cx)-1/c^2*e^(1+cx)+C2