n>=2时:
∵an=2Sn^2/[(2Sn)-1]
∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]
两边同时乘以(2Sn)-1并化简得
2Sn(Sn-1)+Sn-(Sn-1)=0
两边同时除以Sn(Sn-1)得
2+1/(Sn-1)-1/Sn=0
∴1/Sn-1/(Sn-1)=2又1/S1=1/a1=1
∴1/Sn=2n-1
当n=1时成立
∴1/Sn=2n-1
∴数列{1/Sn}是等差数列
∴Sn=1/(2n-1)
n>=2时:
∵an=2Sn^2/[(2Sn)-1]
∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]
两边同时乘以(2Sn)-1并化简得
2Sn(Sn-1)+Sn-(Sn-1)=0
两边同时除以Sn(Sn-1)得
2+1/(Sn-1)-1/Sn=0
∴1/Sn-1/(Sn-1)=2又1/S1=1/a1=1
∴1/Sn=2n-1
当n=1时成立
∴1/Sn=2n-1
∴数列{1/Sn}是等差数列
∴Sn=1/(2n-1)