∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠ACD=180-∠ACB,CP平分∠ACD
∴∠PCD=∠ACD/2=(180-∠ACB)/2=90-∠ACB/2
∵BP平分∠ABC
∴∠PBC=∠ABC/2
∵∠PCD是△PBC的外角
∴∠PCD=∠BPC+∠PBC=∠BPC+∠ABC/2
∴∠BPC+∠ABC/2=90-∠ACB/2
∴∠BPC=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
下面这题是我之前做的类似的题目,请参考.(把图中E改成D即可)