已知函数f(x)=lg(1+ 1 x ),点A n (n,0)(n∈N*),过点A n 作直线x=n交f(x)的图象于点

1个回答

  • 由题意点A n(n,0)(n∈N *),过点A n作直线x=n交f(x)的图象于点B n

    ∴A n(n,0),B n+1(n+1, lg(1+

    1

    n+1 ) )

    ∵θ n=∠B n+1A nA n+1

    ∴tanθ n=

    lg(1+

    1

    n+1 )-0

    (n+1)-n lg(1+

    1

    n+1 ) =lg(n+2)-lg(n+1)

    ∴S n=tanθ 1+tanθ 2+…+tanθ n=lg3-lg2+lg4-lg3+…+lg(n+2)-lg(n+1)=lg(n+2)-lg2

    故答案为:lg(n+2)-lg2