由题意点A n(n,0)(n∈N *),过点A n作直线x=n交f(x)的图象于点B n,
∴A n(n,0),B n+1(n+1, lg(1+
1
n+1 ) )
∵θ n=∠B n+1A nA n+1,
∴tanθ n=
lg(1+
1
n+1 )-0
(n+1)-n lg(1+
1
n+1 ) =lg(n+2)-lg(n+1)
∴S n=tanθ 1+tanθ 2+…+tanθ n=lg3-lg2+lg4-lg3+…+lg(n+2)-lg(n+1)=lg(n+2)-lg2
故答案为:lg(n+2)-lg2