若 f(x) = g(x)*t(x) ,且f(x),g(x),t(x)均可导,则
有 f'(x) = g'(x)*t(x) + g(x)*t'(x)
故 原题:
y=2^x*lnx
y'=(2^x)'*lnx + (2^x) * (lnx)'
=(2^x*ln 2) *lnx + (2^x) *(1/x)
=2^x*lnx*ln2+(2^x)/x
若 f(x) = g(x)*t(x) ,且f(x),g(x),t(x)均可导,则
有 f'(x) = g'(x)*t(x) + g(x)*t'(x)
故 原题:
y=2^x*lnx
y'=(2^x)'*lnx + (2^x) * (lnx)'
=(2^x*ln 2) *lnx + (2^x) *(1/x)
=2^x*lnx*ln2+(2^x)/x