证明:设β=k1α1+k2α2+…+knαn(k1,k2……kn不全为0)
又α1α2…αn-1均可由α1α2…αn线性表示.
∴显然向量组{α1α2…αn-1,β}可由向量组{α1α2…αn}表示.
an=(β-k1α1+k2α2+…+kn-1αn-1)/kn
∵向量β不能由α1α2…αn-1线性,所以kn必不为零,若kn=0,则β=k1α1+k2α2+…+kn-1αn-1(k1,k2……kn-1不全为0),与题设矛盾
∴an可由α1α2…αn-1,β线性表示.
因为两个向量组均可互相线性表示,所以等价