1、lim(x趋近于0)xcotx-1/x平方.2、设y=ln根号1-x/arccosx,求y'(0).3、设y=ln(

2个回答

  • lim(x->0)(xcotx-1/x^2)

    =lim(x->0)(cosx*(x/sinx)-1/x^2) lim(x->0)(x/sinx)=lim(x->0)1/(sinx/x)=1

    =-∞

    y=ln√(1-x)/arccosx

    y'=[ [-1/2√(1-x)]/√(1-x) ] /arccosx +ln√(1-x)*(-1/√(1-x^2))

    =(-1/2)(1/(1-x))(1/arccosx) +ln√(1-x)*(-1/√(1-x^2)

    y'(0)=(-1/2)(1/(π/2))+0=π

    y=ln(1+x+y)

    e^y=(1+x+y)

    y'e^y=1+y'

    y'(e^y-1)=1

    y'=1/(e^y-1)

    dy/dx=1/(x+y)