原式
=[(2x-6)(x^2-6x+9)(x-2)]/[(x^2-4x+4)(4-2x)(x-3)]
=[(2x-6)/(x-3)][(x-2)/(x-2)^2][(x-3)^2/(x-3)]/(4-2x)
=2(x-3)/(x-2)(4-2x)]
=-(x-3)/(x-2)^2
选3,由于分子是3-3=0,所以分数值是0
原式
=[(2x-6)(x^2-6x+9)(x-2)]/[(x^2-4x+4)(4-2x)(x-3)]
=[(2x-6)/(x-3)][(x-2)/(x-2)^2][(x-3)^2/(x-3)]/(4-2x)
=2(x-3)/(x-2)(4-2x)]
=-(x-3)/(x-2)^2
选3,由于分子是3-3=0,所以分数值是0