令F(x)=x*f(x),则由题设条件可得F(x)在区间[a,b]上连续,在(a,b)内可导,于是用拉格郎日中值定理得,在(a,b)内至少存在一个A,使[F(b)-F(a)]/(b-a)=F'(A)★,而F'(x)=f(x)+xf'(x),故★即是[b*f(b)-a*f(a)]/(b-a)...
设f(X)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一个A,使[b*f(b)-a*f(a)
1个回答
相关问题
-
f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
-
设F(x)在区间(a,b)连续,(a,b)可导.证明:在(a,b)内至少存在一点E,使得 [bF(b)-aF(a)]/(
-
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)>a,f(b)
-
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r