答:
p≠1,q=-1
充分性
Sn=p^n+q为等比数列,pq≠0
S(n+1)=p^(n+1)+q,两式相减,
A(n+1)=p^n*(p-1),由题意,当n=0也成立,
A1=p+q=p-1,q=-1,
An=p^(n-1)*(p-1),故p≠1,
必要性
p≠1,q=-1,pq≠
Sn=p^n-1
A1=p-1
S(n+1)=p^(n+1)-1
A(n+1)=p^n(p-1)
故An=p^(n-1)*(p-1)对一切n均成立
A(n+1)/An=p≠0,A1=p-1≠0
该数列为等比数列.