A1=2,A(n+1)=2/(An+1),Bn=|(An+2)/(An-1)|,n=1,2,3...求数列Bn通项?

1个回答

  • (i)

    a(n+1)=2/(an+1)

    a(n+1) -1 =2/(an+1) -1

    = -(an-1)/(an+1)

    1/[a(n+1) -1] = -(an+1)/(an-1)

    = -1 - 2/(an-1)

    1/[a(n+1) -1]+1/3 = -2[ 1/(an-1) +1/3]

    => {1/(an-1) +1/3} 是等比数列,q=-2

    1/(an-1) +1/3 = (-2)^(n-1).(1/(a1-1) +1/3)

    =-(2/3)(-2)^n

    1/(an-1) = -1/3 -(2/3)(-2)^n

    an = 1- 1/[1/3 +(2/3)(-2)^n]

    an +2 = 3 - 1/[1/3 +(2/3)(-2)^n]

    = 3 -3/[1 +2.(-2)^n] (1)

    = 6.(-2)^n/[1 +2.(-2)^n]

    an -1 = - 1/[1/3 +(2/3)(-2)^n]

    = -3/[1 +2.(-2)^n] (2)

    (1)/(2)

    =>(an+2)/(an-1) = (-2)^(n+1)

    bn = |(an+2)/(an-1)| = 2^(n+1)

    (ii)

    Sn = a1+a2+...+an

    Sn = (9/8)an-(1/2)*3^n+0.5

    n=1,a1=8

    an = Sn -S(n-1)

    =(9/8)an -(9/8)a(n-1) - 3^(n-1)

    an = 9a(n-1) +8.3^(n-1)

    an + (4/3).3^n = 9[ a(n-1) + (4/3).3^(n-1) ]

    {an + (4/3).3^n}是等比数列,q=9

    an + (4/3).3^n = 9^(n-1) .(a1 + (4/3).3^1)

    = 12.9^(n-1)

    an = -(4/3).3^n +12.9^(n-1)

    Sn = -2( 3^n-1) + (3/2)(9^n -1)

    = (3/2)9^n - 2.3^n + 1/2

    = (1/2) [ 3(3^n)^2- 4(3^n) + 1]

    = (1/2) (3^(n+1) -1)(3^n-1)

    bn = 3^n/Sn

    = 2.3^n/[(3^(n+1) -1)(3^n-1)]

    = 1/(3^n-1) - 1/(3^(n+1) -1)

    Tn = b1 +b2+...+bn

    = 1/2 -1/(3^(n+1) -1)