∵AD=AC,BC=BE,
∴∠ACD=∠ADC,∠BCE=∠BEC,
∴∠ACD=(180°-∠A)÷2,∠BCE=(180°-∠B)÷2,
∵∠A+∠B=90°,
∴∠ACD+∠BCE-∠DCE=180°-(∠A+∠B)÷2-∠DCE=180°-45°-∠DCE=135°-∠DCE=90°,
∴∠DCE=45°.
∵AD=AC,BC=BE,
∴∠ACD=∠ADC,∠BCE=∠BEC,
∴∠ACD=(180°-∠A)÷2,∠BCE=(180°-∠B)÷2,
∵∠A+∠B=90°,
∴∠ACD+∠BCE-∠DCE=180°-(∠A+∠B)÷2-∠DCE=180°-45°-∠DCE=135°-∠DCE=90°,
∴∠DCE=45°.