(1)a*b=4cos(π/4-θ)*sin2θ*cos(π/4-θ)+cos4θ
=2[1+cos(π/2-2θ)]sin2θ+cos4θ
=2sin2θ+2(sin2θ)^2+cos4θ
=2sin2θ+1=(4√2+3)/3,
∴sin2θ=(2√2)/3,
2θ∈(π/2,π),
cos2θ=-1/3,
tan2θ=-2√2.
(2)[2cos^(θ/2)-sinθ-1]/[√2sin(θ+π/4)]
=[cosθ-sinθ]/[sinθ+cosθ]
=[(cosθ)^2-(sinθ)^2]/(1+sin2θ)
=cos2θ/(1+sin2θ)
=-3+2√2.