(2012•德阳模拟)如图,圆柱形区域的横截面在没有磁场的情况下,带电粒子(不计重力)以某一未知初速度沿截面直径方向入射

1个回答

  • 解题思路:在没有磁场时,不计重力的带电粒子以某一初速度沿截面直径方向入射,穿过此区域时粒子做匀速直线运动;在有磁场时,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,粒子做匀速圆周运动.在匀速直线运动中虽不知半径,但可由位移与时间列出与入射速度的关系,再由匀速圆周运动中半径公式可算出粒子的比荷、周期.

    无磁场时,带电粒子做匀速直线运动,设圆柱形区域磁场的半径为R0,则v=

    2R0

    t.

    而有磁场时,带电粒子做匀速圆周运动,由半径公式可得:R=[mv/qB]

    由几何关系得,圆磁场半径与圆轨道半径的关系:R=

    3R0.

    联立三式解得

    m

    qB=

    3

    2t

    粒子的周期T=[2πm/qB]=

    3πt.因为初速度无法求出,则无法求出轨道半径,粒子的动量.故D正确,A、B、C错误.

    故选D.

    点评:

    本题考点: 带电粒子在匀强磁场中的运动;牛顿第二定律;向心力.

    考点点评: 带电粒子仅在洛伦兹力的作用下做匀速圆周运动,洛伦兹力只改变速度的方向不改变速度的大小,洛伦兹力对粒子也不做功.同时当粒子沿半径方向入射,则也一定沿着半径方向出射.

相关问题