c^2=n+1
c=√(n+1)
F1F2^2=4(n+1)
|PF1|+|PF2|=2√[n+2]
|PF1|-|PF2|=2√n
PF1=√(n+2)+√n
PF1^2=2n+2+2√(n^2+2n)
PF2=√(n+2)+√n
PF2^2=2n+2-2√(n^2+2n)
PF1^2+PF2^2=4n+4=4(n+1)=F1F2^2
<F1PF2=90
c^2=n+1
c=√(n+1)
F1F2^2=4(n+1)
|PF1|+|PF2|=2√[n+2]
|PF1|-|PF2|=2√n
PF1=√(n+2)+√n
PF1^2=2n+2+2√(n^2+2n)
PF2=√(n+2)+√n
PF2^2=2n+2-2√(n^2+2n)
PF1^2+PF2^2=4n+4=4(n+1)=F1F2^2
<F1PF2=90