(1)
f(x)=sin(πx/4-π/6)-2cos^2πx/8+1
=(根号3)/2sin(πx/4)-1/2cos(πx/4)-cos(πx/4)
=根号3[1/2sin(πx/4)-(根号3)/2cos(πx/4)]
=(根号3)sin(πx/4-π/3)
最小正周期为2π/(π/4)=4
(2)
g(x)=f(2-x)=(根号3)sin[π(2-x)/4-π/3]=-(根号3)sin(πx/4-π/6)
(3)
x属于(0,4/3),(πx/4-π/6)属于(-π/6,π/6)
所以g(x)的最大值为g(0)=(根号3)/2