反证法是先假设命题的结论不成立,经过推理得出矛盾,从而证明原命题成立.
有时候也会证明一个命题的逆否命题是正确的,这就证明了原命题.这种情况适用于其逆否命题比较容易证明.
适用范围:证明一些命题,且正面证明有困难,情况多或复杂,而逆否命题则比较浅显.
具体方法(E.G):
命题r=在C下,若A则B
反证:若A则¬B
证明¬B与A的矛盾
举例:欲证“若P则Q”为真命题,从否定其结论即“非Q”出发,经过正确的逻辑推理导出矛盾,从而“非Q”为假,即原命题为真,这样的证明方法称为反证法,
先提出和定理中的结论相反的假定,然后从这个假定中得出和已知条件相矛盾的结果来.
定义:
【反证法】 间接论证的一种.先论证与原论题相矛盾的论题即反论题为假,然后根据排中律确定原论题为真.其论证过程可以表示如下:
[求证] A(原论题)
[证明] (1)设非A真(非A为反论题)
(2)如果非A,则B(B为由非A推出的论断)
(3)非B(已知)
(4)所以,并非非A(根据充分条件假言推理的否定后件式)
(5)所以,A(非非A=A).