设广义积分∫(e→+无穷)f(x)dx收敛,且满足方程f(x)=2/(除以)x^2-1/(除以)x乘以lnx的平方 ∫(

1个回答

  • Unexpectedly only me can help you?Don't mind I say English.

    Let N = ∫(e→+∞) f(x) dx,since this integral is convergent,it's a constant

    f(x) = 2/x² - 1/(xln²x) · ∫(e→+∞)

    f(x) = 2/x² - 1/(xln²x) · N,integrate both sides with range from e to infinity

    ∫(e→+∞) f(x) dx = 2∫(e→+∞) 1/x² dx - N∫(e→+∞) 1/(xln²x) dx

    N = 2 · - 1/x:(e→+∞) - N∫(e→+∞) 1/ln²x d(lnx)

    N = - 2 · (0 - 1/e) - N · - 1/lnx:(e→+∞)

    N = 2/e + N · (0 - 1)

    N = 2/e - N

    2N = 2/e

    N = 1/e = ∫(e→+∞) f(x) dx

    So f(x) = 2/x² - 1/(xln²x) · 1/e

    f(x) = 2/x² - 1/(e · xln²x)