求高数微分方程的通解,

1个回答

  • 设x=tanu,y=tanv

    则dx/du=sec²u,dy/dv=sec²v

    从而dy/dx=(sec²vdv)(/sec²udu)

    原方程化为 (tanv-tanu)secu×(sec²vdv)/(sec²udu)=sec³v

    整理得 (tanv-tanu)dv=secvsecudu

    即 sin(v-u)dv=du

    设t=sin(v-u)

    v-u=arcsint

    dv/du=dt/[du√(1-t²)]+1

    从而得到 dt/[(t-1)√(1-t²)]=du

    解之得 ln|t/[1+√(1-t²)]|-arcsint=u+C1

    将t=sin(v-u)代入上式整理得

    ln|[csc(v-u)+cot(v-u)]|=-v+C2

    将x=tanu,y=tanv代入上式得

    ln|{√[(1+x²)(1+y²)]+1-xy}/(y-x)|=-arctany+C