设x=tanu,y=tanv
则dx/du=sec²u,dy/dv=sec²v
从而dy/dx=(sec²vdv)(/sec²udu)
原方程化为 (tanv-tanu)secu×(sec²vdv)/(sec²udu)=sec³v
整理得 (tanv-tanu)dv=secvsecudu
即 sin(v-u)dv=du
设t=sin(v-u)
v-u=arcsint
dv/du=dt/[du√(1-t²)]+1
从而得到 dt/[(t-1)√(1-t²)]=du
解之得 ln|t/[1+√(1-t²)]|-arcsint=u+C1
将t=sin(v-u)代入上式整理得
ln|[csc(v-u)+cot(v-u)]|=-v+C2
将x=tanu,y=tanv代入上式得
ln|{√[(1+x²)(1+y²)]+1-xy}/(y-x)|=-arctany+C