1)f(x)=loga(x+2)(-1,0)
f(x)=loga(2-x)(0,1)
(2) f(x)=loga(x-2k+2)(2k-1,2k)
f(x)=loga(2+2k-x)(2k,2k+1)
其实不用对k分情况
(3)由题意,f(2)=loga2=1/2解得 a=4
所以,log(4)X>1/4 解得 x>4^(1/4)
由函数的单调性和对称性,得区间为
(-4^(1/4),4^(1/4))并上(2-4^(1/4),2+4^(1/4))
1)f(x)=loga(x+2)(-1,0)
f(x)=loga(2-x)(0,1)
(2) f(x)=loga(x-2k+2)(2k-1,2k)
f(x)=loga(2+2k-x)(2k,2k+1)
其实不用对k分情况
(3)由题意,f(2)=loga2=1/2解得 a=4
所以,log(4)X>1/4 解得 x>4^(1/4)
由函数的单调性和对称性,得区间为
(-4^(1/4),4^(1/4))并上(2-4^(1/4),2+4^(1/4))