(1)
[a(n+1)]^2-(an)^2 =2
{ (an)^2} 是等差数列,d=2
(an)^2 - (a1)^2 = 2(n-1)
(an)^2 = 2n-1
an = √(2n-1)
(2)
(an)^2/2^n = (2n-1)(1/2^n)
= (n .1/2^(n-1)) -1/2^n
Sn = S - ( 1- 1/2^n)
S = 1.(1/2)^0 + 2.(1/2)^1 +...+ n(1/2)^(n-1) (1)
(1/2)S = 1.(1/2)^1 + 2.(1/2)^2 +...+ n(1/2)^n (2)
(1)-(2)
S/2 = [1+1/2+...+1/2^(n-1)] - n(1/2)^n
= 2(1- 1/2^n)- n(1/2)^n
S = 4(1- 1/2^n)- 2n(1/2)^n
= 4 - (2n+4)(1/2)^n
Sn = S - ( 1- 1/2^n)
= 4 - (2n+4)(1/2)^n - ( 1- 1/2^n)
= 3 -(2n+3)(1/2)^n