已知△ABC中,AD是角BAC的角平分线,求证AB/AC=BC/DC.(探索多种证明方法)

1个回答

  • 结论有误,应该是:AB/AC=BD/DC.

    证法1:作DE平行CA,交AB于E,则⊿BED∽⊿BAC;且∠EDA=∠DAC;

    又∠EAD=∠DAC,故∠EAD=∠EDA,AE=DE.

    故:AB/AC=BE/DE=BE/AE=BD/DC.

    证法2:作DE平行AB,交AC于E.

    同理可证:DE=AE;⊿ABC∽⊿EDC.

    则AB/AC=ED/EC=AE/EC=BD/DC.

    证法3:作CE平行AD,交BA的延长线于E.

    则⊿BAD∽⊿BEC;且∠E=∠BAD;∠ACE=∠CAD.

    又∠BAD=∠CAD.故∠E=∠ACE,AC=AE.

    所以,AB/AC=AB/AE=BD/DC.

    证法4:过点C作AB的平行线,交AD的延长线于E.

    则⊿ABD∽⊿ECD;且∠E=∠BAD=∠CAD,CE=AC.

    故:AB/AC=AB/CE=BD/DC.

    证法5:作DE垂直AB于E,DF垂直AC于F.AD平分∠BAC,则DE=DF.

    故S⊿ABD/S⊿ACD=(AB*DE/2)/(AC*DF/2)=AB/AC;

    又S⊿ABD/S⊿ACD=BD/DC.(同高的三角形面积比等于底之比)

    所以,AB/AC=BD/DC.