1.已知α,β都是锐角,sin α =4/5,cos(α+β)=5/13,求sinβ的值.

3个回答

  • 1.利用万能公式,我试算了一下,前一半好算,后一半非常之麻烦,不知数字有没错?

    sina=2tan(a/2)/[1+tan^2(a/2)],令,tan(a/2)=t,(方便后面运算),则有

    4/5=2t/(1+t^2),

    2t^2-5t+2=0,t1=1/2,t2=2(不合,舍去,α,β都是锐角).

    t=1/2,

    cosa=(1-t^2)/(1+t^2)=3/5.

    cos(α+β)=5/13,

    cosa*cosβ+sina*cosβ=5/13,

    cosa+sina*tanβ=5/(13cosβ),

    令,tan(β/2)=n,

    3/5+4/5*(2n)/(1-n^2)=5(1+n^2)/[13(1-n^2)]

    化简得32n^2-52n-7=0,

    (4n-7)(8n+1)=0,

    n1=7/4(不合,舍去),n2=-1/8(不合,舍去).

    tan(β/2)=7/4>1,大于1就等于大于45度啊,β>90.

    方程无解啊?

    2.α,β都是锐角,tan α =1/7,sinβ=(√10)/10

    cosβ=√(1-sin^2β)=3√10/10.

    tanβ=sinβ/tanβ=1/3,

    tan2β=2tanβ/[1-tan^2(β)]=3/4.

    tan(α+2β)=[tana+tan2β]/[1-tana*tan2β]

    =(1/7+3/4)/(1-1/7*3/4)

    =1.

    3.化简:

    (1)1/sin10°- (√3)/cos10°

    =[1/2cos10-(√2/2)*cos10]/(2sin10*cos10)

    =(sin30*cos10-cos30*sin10)/sin20

    =sin20/sin20

    =1.

    (2)sin40°(tan10°-√3)

    =2sin40(1/2*sin10-√3/2*cos10)/cos10

    =2sin40(sin10*cos60-cos10*sin60)/sin(90-10)

    =-2sin40*sin50/(2sin40*cos40)

    =-sin50/cos40

    =-1.

    (3)tan70°cos10°[(√3)tan20°-1]

    =2tan70*cos10[(√3/2)sin20-1/2*cos20]/cos20

    =2tan70*cos10*[sin20*cos30-cos20*sin30]/cos20

    =-2sin10*cos10*tan70/cos20

    =-tan20*tan(90-20)

    =-tan20*ctn20

    =-1.

    (4)sin50°[1+(√3)tan10°]

    =2sin50*[1/2*cos10+√3/2*sin10]/cos10

    =2sin50*[sin30*cos10+cos30*sin10]/cos10

    =2sin50*sin(90-50)/cos10

    =2sin50*cos50/cos10

    =sin100/cos10

    =sin80/cos10

    =sin(90-10)/cos10

    =1.