数列{an}满足a1=1,a(n+1)=an/(an+1),令bn=1/an,证明{bn}为等差数列
1个回答
a(n+1)=an/(an+1)
∴1/a(n+1)=(an+1)/an=1+1/an
∵bn=1/an
∴b(n+1)=1+bn
∴﹛bn﹜是等差数列
stupid为您解惑,
如有不满请指出,
相关问题
数列{an}为等差数列,数列{bn}满足bn=2an+1+a2n-1,证明{bn}为等差数列
数列{an}满足a1=1,an^2=(2an+1)a(n+1),令bn=lg(1+1/an),求证{bn}为等比数列
已知数列{an}满足a1=1.an+1an+an+1=an(n≥1).数列{bn}满足bn=lna.证明数列an分之一是
设数列{an}满足a1=2,an+1=an+1/an,(n∈N).令bn=an/根号下n,判断bn与bn+1的大小
知数列an满足a1=4 an=4-4/an-1(n大于等于2) 令bn=1/[(an)-2] 求证bn是等差数列 求数列
数列{an}满足a(n+1)=3an-2/2an-1,且a1=2.(1)设bn=1/an-1,求证{bn}为等差数列.(
数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列
设数列{an}满足a1=2,a(n+1)=an+(1/an),(n∈N).令bn=an/根号下n,判断bn与b(n+1)
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
数列{an}满足a1=1,a2=2,an=1/2(an-1+an-2)(n=3,4...),数列{bn}满足bn=an+