x^2+xy+y^2=14 (1)
x^2-xy+y^2=28 (2)
两式相加得 2(x^2+y^2)=42 即x^2+y^2=21 (3)
两式相减得 2xy=-14 (4)
又因为 (x+y)^2=x^2+2xy+y^2=21-14=7
所以 x+y=正负√7
x^2+xy+y^2=14 (1)
x^2-xy+y^2=28 (2)
两式相加得 2(x^2+y^2)=42 即x^2+y^2=21 (3)
两式相减得 2xy=-14 (4)
又因为 (x+y)^2=x^2+2xy+y^2=21-14=7
所以 x+y=正负√7