解题思路:(1)由于y2-2y+1=(y-1)2,所以x2-(y2-2y+1)=x2-(y-1)2,然后套用公式a2-b2=(a+b)(a-b),再进一步分解因式即可.
(2)先对多项式进行变形,a2(x-y)+b2(y-x)=a2(x-y)-b2(x-y),然后提取公因式(x-y),最后套用公式a2-b2=(a+b)(a-b).
(3)先提取公因式xy,然后套用因式分解的完全平方公式进行进一步分解即可.
(4)先对多项式进行变形,(a+2)(a-8)+25=a2-6a+9,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解.
(1)x2-(y2-2y+1),
=x2-(y-1)2,
=(x+y-1)(x-y+1);
(2)a2(x-y)+b2(y-x),
=a2(x-y)-b2(x-y),
=(x-y)(a2-b2),
=(x-y)(a+b)(a-b);
(3)4x3y+4x2y2+xy3,
=xy(4x2+4xy+y2),
=xy(2x+y)2;
(4)(a+2)(a-8)+25,
=a2-6a+9,
=(a-3)2.
点评:
本题考点: 提公因式法与公式法的综合运用.
考点点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.