设tan(θ/2)=t,证明sinθ=2t/1+t^2
2个回答
由倍角公式得到:tanθ=2t/(1+t^2)
sinθ/cosθ=2t/(1+t^2)
sin^2θ/(1-sin^2θ)=4t^2/(1+t^2)^2
解之得:sinθ=2t/(1+t^2)
相关问题
设tan(θ/2)=t,求证:sinθ=2t/(1+t^2),cosθ=(1-t^2)/(1+t^2),tanθ=2t/
证明tan^θ-sin^2θ=tan^2θsin^2θ
证明 2sin(П+θ)cosθ-1/1-2sin^2θ =tan(9П+θ)-1/tan(П+θ)+1
设θ为锐角,(1-tanθ)/ (1+tanθ)=3+2√2,则sinθcosθ=?
证明恒等式,1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ..
证明:tanθ/2-1/(tanθ/2)=-2/tanθ
求证:(1-tanθ)/(1+tanθ)=(1-2sinθcosθ)/(cos2θ-sin2θ)
求证:2(cos θ -sin θ )/(1+sinθ +cosθ)=tan(∏/4- θ /2)-tan(θ /2)
求证tan2θ-sin2θ=tan2θsin2θ
设 tan(π/4+θ)=3 求(1+sin 2θ-cos2 θ)/(1+sin2 θ+ cos2 θ)的值