因为
一个四棱锥的侧面是四个全等的正三角形,
所以
这个四棱锥的底四边相等
所以
其底面是菱形
设四棱锥是O-ABCD
从顶点O向底面投影,
则投影点O'肯定在菱形的中心
设四棱锥高OO'为h,三角形边长a
连接投影点O和底上AB的中点E
三角形OO'E是直角三角形(OO'是ABCD面的垂线,明显OO'垂直O'E)
O'E长度易知是a/2(O'是对角线BD中点,E是AB中点,O'E是中位线,O'E=1/2*AD)
OE是正三角形OAB的高,易知等于根3/2*a
勾股定理h方+a方/4=3a方/4
h方=a方/2
三角形OO'B也是直角三角形,原因同上.
同样勾股定理
h方+O'B方=a方
得出O'B方=a方/2
O'B=1/2BD
BD=根号2*a
三角形ABD中
BD方=AB方+AD方
所以三角形ABD是直角三角形
一个角是直角的菱形明显是正方形