实际上可导就一定连续啦,但在闭区间边缘上的点是不能说可导的,因为它不符合导数定义,所以加一条闭区间连续.不严格的话直接说闭区间可导也是可以的吧···
求解一个高数概念函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.很多定理前面都有这个限定条件,是为了说明
1个回答
相关问题
-
一个高数问题1.设函数 f(x)和g(x) 在闭区间 [a,b]上连续,在开区间(a,b) 内可导,且f(a)=f(b)
-
已知函数y=f(x)在闭区间[a,b]上连续且非常数函数,在开区间(a,b)内可导
-
罗尔中值定理中,f(x)在a,b闭区间连续,在a,b开区间可导,为什么不是闭区间可导?
-
关于微分中值定理,我看到条件都是在,a到b的闭区间上连续,在开区间上可导.为什么不能在开区间上连续,或者在闭区间上可导呢
-
高数连续与可导问题在中值定理那章里面 几个定理都会有f(x)在开区间(A,B)可导 在闭区间[A,B]连续 的前提 这里
-
若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]
-
如果函数f(x)在开区间(a,b)可导,那么闭区间[a,b]一定连续么?
-
同济高数六版上册83页如果函数在开区间(a,b)内可导且f'+(a)、f'-(b)都存在就说函数在闭区间[a,b]上可导
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
(1/2)求解高数:函数f(x)在区间[a,b]上连续是f(x)在区间[a,b]上可积的( ).A必要条件 B充分条件