1.已知两个多边形的边数之比为1:2,内角和的大小之比为1:3 ,求这两个多边形的边数.

1个回答

  • 1、设最小得边数为x

    (x-2)*180*3=(2x-2)*180

    x=4

    所以为四边形和八边形

    2、分析:根据多边形的边数,可表示这个多边形的内角和,由于内角和中的一个内角换成了这个内角的外角,故可设一辅助未知数列出方程求解.

    设这个多边形边数为n,这个外角的度数为x,则与这个外角相邻的内角为180°-x,列方程得:

    (n-2)×180°+x-(180°-x)=600°

    解之得:x=570°-90°n

    因为0°<x<180°,n为正整数

    所以n=5或n=6

    当n=5时x=120°

    当n=6时x=30°

    答:当边数为5时,这个外角为120°;当边数为6时,这个外角为30°.