(1)EG=EF
【证明】过点E分别作EM垂直于AB,垂足为M;再过点E作EN垂直于CD,垂足为N
当m=1,n=1时,即AC=BC,CE=AE.三角形ABC为等腰直角三角形,角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
又点E为AC的中点,易证EM=EN,
又 角EFM+角EBF=90度,角EBF+角BGD=90度,
所以 角EFM=角BGD,
又 角BGD=角EGN
所以 角EFM=角EGN,
从而证明三角形EFM全等于三角形EGN.
故EG=EF.
(1)EG=EF
【证明】过点E分别作EM垂直于AB,垂足为M;再过点E作EN垂直于CD,垂足为N
当m=1,n=1时,即AC=BC,CE=AE.三角形ABC为等腰直角三角形,角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
又点E为AC的中点,易证EM=EN,
又 角EFM+角EBF=90度,角EBF+角BGD=90度,
所以 角EFM=角BGD,
又 角BGD=角EGN
所以 角EFM=角EGN,
从而证明三角形EFM全等于三角形EGN.
故EG=EF.