(文)已知数列{a n }的前n项和为S n ,a 1 = 1 4 且S n =S n-1 +a n-1 + 1 2 ,

1个回答

  • (1)由S n=S n-1+a n-1+

    1

    2 ,得S n-S n-1=a n-1+

    1

    2 ,2a n=2a n-1+1,a n-a n-1+

    1

    2 …2分

    ∴a n=a 1+(n-1)d=

    1

    2 n-

    1

    4

    (2)证明:∵3b n-b n-1=n,∴b n=

    1

    3 b n-1+

    1

    3 n,

    ∴b n-a n=

    1

    3 b n-1+

    1

    3 n-

    1

    2 n+

    1

    4 =

    1

    3 b n-1-

    1

    6 n+

    1

    4 =

    1

    3 (b n-1-

    1

    2 n+

    3

    4 );

    b n-1-a n-1=b n-1-

    1

    2 (n-1)+

    1

    4 =b n-1-

    1

    2 n+

    3

    4 ;

    ∴由上面两式得

    b n - a n

    b n-1 - a n-1 =

    1

    3 ,又b 1-a 1=-

    119

    4 -

    1

    4 =-30

    ∴数列{b n-a n}是以-30为首项,

    1

    3 为公比的等比数列.

    (3)由(2)得b n-a n=-30× (

    1

    3 ) n-1 ,

    ∴ b n = a n -30× (

    1

    3 ) n-1 =

    1

    2 n-

    1

    4 -30× (

    1

    3 ) n-1 ,

    b n-b n-1=

    1

    2 n-

    1

    4 -30× (

    1

    3 ) n-1 -

    1

    2 (n-1)+

    1

    4 +30× (

    1

    3 ) n-2

    =

    1

    2 + 30× (

    1

    3 ) n-2 (1-

    1

    3 )

    =

    1

    2 + 20× (

    1

    3 ) n-2 >0,∴{b n}是递增数列

    当n=1时,b 1=-

    119

    4 <0;当n=2时,b 2=

    3

    4 -10 <0;

    当n=3时,b 3=

    5

    4 -

    10

    3 <0;当n=4时,b 4=

    7

    4 -

    10

    9 >0,

    所以,从第4项起的各项均大于0,故前3项之和最小.

    且S 3=

    1

    4 (1+3+5)-30-10-

    10

    3 =-41

    1

    12 .