(1)由S n=S n-1+a n-1+
1
2 ,得S n-S n-1=a n-1+
1
2 ,2a n=2a n-1+1,a n-a n-1+
1
2 …2分
∴a n=a 1+(n-1)d=
1
2 n-
1
4
(2)证明:∵3b n-b n-1=n,∴b n=
1
3 b n-1+
1
3 n,
∴b n-a n=
1
3 b n-1+
1
3 n-
1
2 n+
1
4 =
1
3 b n-1-
1
6 n+
1
4 =
1
3 (b n-1-
1
2 n+
3
4 );
b n-1-a n-1=b n-1-
1
2 (n-1)+
1
4 =b n-1-
1
2 n+
3
4 ;
∴由上面两式得
b n - a n
b n-1 - a n-1 =
1
3 ,又b 1-a 1=-
119
4 -
1
4 =-30
∴数列{b n-a n}是以-30为首项,
1
3 为公比的等比数列.
(3)由(2)得b n-a n=-30× (
1
3 ) n-1 ,
∴ b n = a n -30× (
1
3 ) n-1 =
1
2 n-
1
4 -30× (
1
3 ) n-1 ,
b n-b n-1=
1
2 n-
1
4 -30× (
1
3 ) n-1 -
1
2 (n-1)+
1
4 +30× (
1
3 ) n-2
=
1
2 + 30× (
1
3 ) n-2 (1-
1
3 )
=
1
2 + 20× (
1
3 ) n-2 >0,∴{b n}是递增数列
当n=1时,b 1=-
119
4 <0;当n=2时,b 2=
3
4 -10 <0;
当n=3时,b 3=
5
4 -
10
3 <0;当n=4时,b 4=
7
4 -
10
9 >0,
所以,从第4项起的各项均大于0,故前3项之和最小.
且S 3=
1
4 (1+3+5)-30-10-
10
3 =-41
1
12 .