已知:关于x的一元二次方程x2-(k+1)x-6=0,求证:对于任意实数k,方程有两个不相等的实数根.

1个回答

  • 解题思路:先进行判别式得到△=(k+1)2+24,再根据非负数的性质得到△>0,然后根据判别式的意义即可得到结论.

    证明:△=[-(k+1)]2-4×1×(-6)

    =(k+1)2+24,

    ∵(k+1)2≥0,

    ∴(k+1)2+24>0,即△>0,

    ∴方程有两个不相等的实数根.

    点评:

    本题考点: 根的判别式.

    考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.