1、∫x√x^2+1dx2、∫e^xsin(e^x-2)dx3、∫(lnx/x)dx4、∫(1/x^2)乘tan(1/x

2个回答

  • ∫x√(x²+1)dx=(1/2)∫√(x²+1)d(x²+1)

    =(1/2)(2/3)√(x²+1)³+C (C是积分常数)

    =(1/3)√(x²+1)³+C ;

    ∫e^xsin(e^x-2)dx=∫sin(e^x-2)d(e^x-2)

    =C-cos(e^x-2) (C是积分常数);

    ∫(lnx/x)dx=∫lnxd(lnx)

    =(1/2)ln²x+C (C是积分常数);

    ∫(1/x^2)乘tan(1/x)dx=-∫[sin(1/x)/cos(1/x)]d(1/x)

    =∫[1/cos(1/x)]d[cos(1/x)]

    =ln│cos(1/x)│+C (C是积分常数);

    ∫cos²x乘sinxdx=-∫cos²xd(cosx)

    =C-(1/3)cos³x (C是积分常数);

    ∫(tanx)^5*sec²xdx=∫(tanx)^5d(tanx)

    =(1/6)(tanx)^6+C (C是积分常数).