∵tanB/tanA+1=(tanB+tanA)/tanA ,2c/a=2sinC/sinA
∴(tanB+tanA)/tanA = 2sinC/sinA
两边同乘sinA得
cosA(tanB+tanA)=2sinC
∵sinC=sin(A+B)=sinAcosB+cosAsinB
∴cosA(tanB+tanA)=2(sinAcosB+cosAsinB)
两边同除以cosA得
tanB+tanA=2(tanAcosB+sinB)
∵sinB=cosBtanB
∴tanB+tanA=2(tanAcosB+cosBtanB)=2cosB(tanB+tanA)
2cosB=1
cosB=1/2 B=π/3
(2)
∵C=π-A-B=2π/3-A
∴C+π/6=5π/6-A
∴cos(C+π/6)=cos(5π/6-A)=-cos[(5π/6-A)-π]=-cos(-π/6-A)=-cos(A+π/6)
=-(cosAcosπ/6-sinAsinπ/6)=sinAsinπ/6-cosAcosπ/6=½sinA-(√3/2)cosA=1/3
∴(√3/2)cosA=½sinA-1/3
两边平方得
3/4*cos²A=1/4*sin²A+1/9-1/3*sinA
∵sin²A+cos²A=0
∴3/4*cos²A=3/4*(1-sin²A)=3/4-3/4*sin²A
3/4-3/4*sin²A=1/4*sin²A+1/9-1/3*sinA
sin²A-1/3*sinA+1/9-3/4=0
设sinA=x (x>0)
则有x²-1/3*x+1/9-3/4=0
36x²-12x-23=0
Δ=12²-4*36*(-23)=3600
x=1或-2/3(舍去)
∴sinA=1