在△ABC中,角A,B,C所对的边分别为a,b,c且tanB/tanA+1=2c/a

1个回答

  • ∵tanB/tanA+1=(tanB+tanA)/tanA ,2c/a=2sinC/sinA

    ∴(tanB+tanA)/tanA = 2sinC/sinA

    两边同乘sinA得

    cosA(tanB+tanA)=2sinC

    ∵sinC=sin(A+B)=sinAcosB+cosAsinB

    ∴cosA(tanB+tanA)=2(sinAcosB+cosAsinB)

    两边同除以cosA得

    tanB+tanA=2(tanAcosB+sinB)

    ∵sinB=cosBtanB

    ∴tanB+tanA=2(tanAcosB+cosBtanB)=2cosB(tanB+tanA)

    2cosB=1

    cosB=1/2 B=π/3

    (2)

    ∵C=π-A-B=2π/3-A

    ∴C+π/6=5π/6-A

    ∴cos(C+π/6)=cos(5π/6-A)=-cos[(5π/6-A)-π]=-cos(-π/6-A)=-cos(A+π/6)

    =-(cosAcosπ/6-sinAsinπ/6)=sinAsinπ/6-cosAcosπ/6=½sinA-(√3/2)cosA=1/3

    ∴(√3/2)cosA=½sinA-1/3

    两边平方得

    3/4*cos²A=1/4*sin²A+1/9-1/3*sinA

    ∵sin²A+cos²A=0

    ∴3/4*cos²A=3/4*(1-sin²A)=3/4-3/4*sin²A

    3/4-3/4*sin²A=1/4*sin²A+1/9-1/3*sinA

    sin²A-1/3*sinA+1/9-3/4=0

    设sinA=x (x>0)

    则有x²-1/3*x+1/9-3/4=0

    36x²-12x-23=0

    Δ=12²-4*36*(-23)=3600

    x=1或-2/3(舍去)

    ∴sinA=1