由立方差公式△y=(x+d)^(2/3)-x^(2/3)
=[(x+d)^2-x^2]/[(x+d)^(4/3)+(x^2+dx)^(2/3)+x^(4/3)]
=d(2x+d)/[(x+d)^(4/3)+(x^2+dx)^(2/3)+x^(4/3)]
所以,△y/d=(2x+d)/[(x+d)^(4/3)+(x^2+dx)^(2/3)+x^(4/3)],当d→0时,极限是 2x/[x^(4/3)+x^(4/3)+x^(4/3)]=2/3×x^(-1/3)
所以,x^(2/3)的导数是2/3×x^(-1/3).