☆☆简单题干,求证等差数列的,急!

1个回答

  • ∵an·a(n+1) + 2a(n+1) + 1 = 0

    ∴an·a(n+1) + a(n+1) + 1 = -a(n+1)

    an·a(n+1) + an + a(n+1) + 1 = an - a(n+1)

    (an + 1)·(a(n+1) + 1)= an - a(n+1)

    即:

    an - a(n+1)

    ———————————— = 1

    (an + 1)·(a(n+1) + 1)

    则:

    1 1

    —————— — ——————

    a(n+1) + 1 an + 1

    an + 1 - 【a(n+1) - 1】

    = ————————————

    (an + 1)·(a(n+1) + 1)

    an - a(n+1)

    = ————————————

    (an + 1)·(a(n+1) + 1)

    = 1

    ∵a1=1

    ∴1/(an + 1)=1/(1+1)=1/2

    则数列{1/(an + 1)}为首项是1/2,公差是1的等差数列.