为什么8×4^(n-1)=2^(2n+1)?
1个回答
8×4^(n-1)
=2^3×(2^2)^(n-1)
=2^3×2^(2n-2)
=2^(3+2n-2)
=2^(2n+1)
相关问题
用数学归纳法证明: 1 2×4 + 1 4×6 + 1 6×8 +…+ 1 2n(2n+2) = n 4(n+1) (其
化简16^n+2×4^n-1/8^2n×5^2n+4×2^n/5^2n+3×2^n+3
用数学归纳法证明:[1/2×4+14×6+16×8+…+12n(2n+2)=n4(n+1)](其中n∈N*).
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N*)
求证1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).
求证1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).
求证1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).
求证1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).
(2010•北海)规定:2!=2×1;3!=3×2×1;4!=4×3×2×1,…,n!=n×(n-1)×(n-2)×…×
求数列1×2.3×4.5×8.(2n-1)×2^n的前n项和