解题思路:根据翻折变换的性质得出∠ACD=∠BCD,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC,再利用平角的定义,即可得出答案.
∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,
∴∠ACD=∠BCD,∠CDB=∠CDB′,
∵∠ACB=90°,∠A=25°,
∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,
∴∠BDC=∠B′DC=180°-45°-65°=70°,
∴∠ADB′=180°-70°-70°=40°.
故答案为:40°.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC和∠B′DC的度数是解题关键.