A(n+1)=An+ln(1+1/n)
a(n+1)-an=ln(1+1/n)=ln【(n+1)/n】
an=a1+(a2-a1)+(a3-a2)+(a4-a3)+.+(an-an-1)
=2+ln(2/1)+ln(3/2)+ln(4/3)+.+ln(n/n-1)
=2+ln(2/1*3/2*4/3*...*n/n-1)
=2+lnn
A(n+1)=An+ln(1+1/n)
a(n+1)-an=ln(1+1/n)=ln【(n+1)/n】
an=a1+(a2-a1)+(a3-a2)+(a4-a3)+.+(an-an-1)
=2+ln(2/1)+ln(3/2)+ln(4/3)+.+ln(n/n-1)
=2+ln(2/1*3/2*4/3*...*n/n-1)
=2+lnn