∵(2x+3y+1)²与|4x+y-3|互为相反数
∴﹙2x+3y+1﹚²+|4x+y+3|=0
∵﹙2x+3y+1﹚²≥0
|4x+y+3|≥0
∴﹙2x+3y+1﹚²=0
|4x+y+3|=0
∴2x+3y+1=0 ①
4x+y-3=0 ②
解得;x=1 y=﹣1
∴xy=﹣1
∴﹙xy﹚^101
=﹙﹣1﹚^101
=﹣1
∵(2x+3y+1)²与|4x+y-3|互为相反数
∴﹙2x+3y+1﹚²+|4x+y+3|=0
∵﹙2x+3y+1﹚²≥0
|4x+y+3|≥0
∴﹙2x+3y+1﹚²=0
|4x+y+3|=0
∴2x+3y+1=0 ①
4x+y-3=0 ②
解得;x=1 y=﹣1
∴xy=﹣1
∴﹙xy﹚^101
=﹙﹣1﹚^101
=﹣1