解题思路:(1)商场的利润是由每件商品的利润乘每天的销售的数量所决定.在这个问题中,每件服装的利润为(x-42),而销售的件数是(-3x+204),由销售利润y=(售价-成本)×销售量,那么就能得到一个y与x之间的函数关系,这个函数是二次函数.
(2)要求销售的最大利润,就是要求这个二次函数的最大值.
(1)由题意,销售利润y(元)与每件的销售价x(元)之间的函数关系为
y=(x-42)(-3x+204),
即y=-3x2+330x-8568.
故商场卖这种服装每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式为y=-3x2+330x-8568;
(2)配方,得y=-3(x-55)2+507.
故当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元.
点评:
本题考点: 二次函数的应用.
考点点评: 本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用二次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.