解题思路:连接BD交AC于O,连结BG,BH,首先证得四边形BHDG是平行四边形得到AO=OC,然后利用对角线互相平分的四边形是平行四边形判定即可.
证明:连接BD交AC于O,连结BG,BH,∵E是AB中点,AG=GH,∴EG是△ABH的一条中位线,∴EG∥BH,即GD∥BH,同理可证BG∥DH,∴四边形BHDG是平行四边形.∴BO=OD,GO=OH,又∵AG=HC,∴AG+GO=HC+OH,即AO=OC,又∵BO=OD...
点评:
本题考点: 平行四边形的判定.
考点点评: 本题考查了平行四边形的判定,解题的关键是正确的作出辅助线并牢记平行四边形的判定定理,难度不大.