(x^2+12)/(x-2)=(x^2-4)/(x-2)+(12+4)/(x-2)=x+2+16/(x-2)=x-2+16/(x-2) +4
x-2>0
x-2+16/(x-2) +4>=2根号16+4=8+4=12
当x-2=16/(x-2) x-2=4 x=6时取最小值, f(x)min=12
(x^2+12)/(x-2)=(x^2-4)/(x-2)+(12+4)/(x-2)=x+2+16/(x-2)=x-2+16/(x-2) +4
x-2>0
x-2+16/(x-2) +4>=2根号16+4=8+4=12
当x-2=16/(x-2) x-2=4 x=6时取最小值, f(x)min=12