设f(x)是定义域在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0,0<f(x)<1.
1个回答
证明:
(1)令x=0,y=1得f(0)=1,
令y=-x,得f(0)=f(x)f(-x)=1
当x<0时-x1
(2)设 x10,∴f(x2-x1)∈(0,1)
∴f(x2)
相关问题
设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,0
证明单调性设f(x)是定义在R上的函数,且对于任意x、y属于R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
设定义在R上的函数f(x),对任意x,y∈R,有f(x+y)=f(x)*f(y),且当x>0时,恒有f(x)>1.证明:
f(x)是定义在R上的函数,且对于任意x,y属于R,恒有f(x+y)=f(x)f(y),且当x>0时f(x)>1.证明:
函数f(x)的定义域为R,且对任意x,y∈R有f(x+y)=f(x)+f(y),且当x.0时f(x),0,f(1)=-2
f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(
设函数y=f(x)定义域为R,当x1,且对于任意的x,y∈R,有f(x+y)=f(x)·f(y)成立.
已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.
已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0